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h,L :A K I a’,, a,’ = K I h, 

and for a negative value of A,, we have 
3,, = - K / a,” 

from which it follows that Us” == - K / A,. 

The initial function pa (z) which represents the pressure at the initial instant oftime, 

can be expanded into a series in eigenfunctions of the integral equation (2.6) which are 

orthogonal by virtue of the kernel 

The pressure at subsequent instants of time is given by 

where h,’ denotes the positive, and h,” the negative characteristic numbers. 
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An approach-evasion problem with a functional target set under constraints on 

the system’s trajectory is studied for a conflict-controlled system described by 
a differential-difference equation. The main result states: either a strategy 
exists for the first player resolving the approach problem or a strategy exists 
for the second player resolving the evasion problem. The paper is closely re- 
lated to [l-6]. 

1. We examine the system with aftereffect 

2’ 0) = f (G x1 (a), u, v), t, < t < 6 (1.1) 

u”PcE,,, vEQcE r* 

Here x is the n -dimensional phase vector ; u and v are the controls of the first and 
second players: P and Q are compacta; the functional f (t, it (s), u, V) is defined 
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on the pmduct [tnr 61 x B, X P X Q, where &, is any one of the spaces c (I- 

w, tilt or H, (w = con& > 0); C (I- w, 01) is the space of continuous n-dimen- 
sional functions 5 (a), - 0 < s < 0, with the norm /[z (s)[lrlr = max, 115 (s)f/; H, 
is the Hilbert space of the n-dimensional functions x (s) with the norm 

II x (4 lb = (IIS (0) II2 + f ix (s) il” CiS)‘~~ 

= (Q i- 22% + . .:+ zn2>‘h, zEzE, 

f f& z (4, u, v) = I* (4 5 (- z;), . . ., z (-- -%J* Ip (4 x (s)), 24, 0) 
when B, = &,+ The finctiona~ f (t, x (s), u, ZY), cp (t, x (s)) and f* (t, Q,. . ., 
Zm, z, u, u) are continuous and satisfy a Lipschitz condition in x (s) and (Zr,. . , , 
z,, z) s respectively. The following growth conditions are satisfied uniformly with res- 

pect to II 62 P and u E Q for any 2 (z) E B* : if E3, = c' (t - IX, O]), then 

IV (4 t 6): r4 4II< 51 (t) -I- 5, @)/I z (S)$o 

if B, = H,, then 
II f* (k 21, l . . , z la* CP (4 5 (4L u, 4 II < 51 (t) + 

~z(~~~~~(S)~ +$$ Q(t) ~~2~~~ 

where ci (t) are nonnegative functions summable on [to, SJ ; qj (t) are nonnegative 
functions square-summable on [to, 61 . We denote 

x (s; 6) = x (a), Q (s; 6) = X (t -I- s; s>,- 6 < s \< 0 (6 > 0) 

The element xtt (s; o) and the nonemp~ closed sets 

iv c It,, Sl X B,, i%r c It, - @ + 

are specified, 
7,8] x BP (p = const > 0, z = mli t@, PI) 

The purpose of choosing the control 16, formed on the feedback principle u [t] = 

U (t, x (t -+ s; ‘t)) ) is to ensure that the trajectory segment x (t 4- s; p) is led onto 
,$JJ no later than at the instant @ while retaining the trajectory segments realized during 

the motion in a given set N for any measurable realization u [2]. The purpostr. of choos- 

ing the coztrol U, formed on the feedback principle u [t] ~2: v (t, x (t + 8; T)), is to 
ensure that the motion evades set ~11 inside N or that this motion is led out of N before 
the instant it hits onto &u. Similar problems for systems with aftereffect were studied in 

[Z, 31 wherein the corresponding alternative statements were proved. In the present pa- 
per, in contrast to f2, 33, these problems are satisfied under the additional assumptions 

that functional phase constraints are present and that the target sets are more general. 
The rule which associates a nonempty closed set U @) C P with each pair p = 

(4 x (a; x)}, t > t,, i.e., the game’s positions, is called the first player’s strategy u 
For p > w and t = t, we set 

z (S; x) = fs (s; w), s & i- 0, 01 

x (s; x) = x, (-- w), SE [- r, - 0)) 

Let A be some finite covering of the interval [to, 81 by the intervals pi < t < Ti+l, 

x0 = &I, i =: 0, 1,. . .; 6 = maxi (Zi+r - zf). By XA [t; po, U] we denote the 



938 V. I. Maksimov 

function XA ItI, absolutely continuous at t, < t < 6 *such that XA it, + S; ‘rJ = 
X0 (Si Z-) and for almost all t E f t,, 6) 

XA’ ftI E P (t, XA It + S; OI, U [TiI) 

where 
u JziJ E u (Zi, XA Jzi + S; ZJ), F (t, &a[t + S; WI 

7.d hi]) = = (.f (t, XA [t + s; @I, Zd htj, u) v E Q} 
A continues function with the following property is called a motion x [tJ = x It, ps, 

u] : a sequence {Al} of coverings with {6j} --f 0 exists such that (XA~ 18; po, UJ) 
converges in C ([t,, 61) to x [tJ for some sequence of functions. The strategy v and 

the motions x [t; pa, VJ and x It; po, U, VI are defined analogously. We denote: 

X (.; par V) is the sheaf of all motions X ItJ = x [t; ~0, VJ for t E [to, 81 
and X5 (tt i- s; par V) = {xte (s; 6) 1 x (t) = x It; po, VI}. The following state- 
ment is valid [2, 31: 

Lemma 1.1. The sets X (s; pot U), X (-; PO, V) and X (e; PO, U, V) are 
compact in themselves in C (It,, 91) and the inclusions 

hold. 

x (* ; PO, U, VI c X (*; PO, U) 

X (*; PO, U, V) c X f* ; PO, V) 

Problem 1. 1. Find the strategy U” (t, x (S; z)) which ensures the contact 

(X*9 X II;* .S; p1)E.M 
G? x b -f- s; CL]) g M, t, -k a - 0 < t ( z* 
GJIi, +s; d)EN, to< &+r*\($t 

for every motion x [t] = x (1; po, UC] for “* > to + Z - 0. 
Pro b le m 1, 2. Find the neighborhood H (N) and G (M) and the strategy Ve (t, 

x (s; T)) which exclude the contact 

(**q Xj%* +s; PIEGW) 
it, 5 [t -j- s; WI} E H (NJ, to < t < z* G 9 

for every motion X [tl = X [G PO* V”l for z* > to + z - ‘*). 
Problem 1.3 (1.4). SolveProblem l.l(l.2) withr, = 6. 

2. We give below a method for solving Problems 1.1- 1.4, based on the concept of 
extremal strategy from [Z - 41. In what followswe assume the sa~faction of 

Condition A. The equality 

min max I’f (t, x(s), u, u) = rnn; rrrp” Z’f (4 x (s), u, V) 
[UEP OEQ 

is valid for any vector 1 EE E, and pair {t, x (s) > E Ito, 61 X B,. 
Let some set W (t) f B, be associated with each value of parameter t (to < t < 

S) .Following 11, 21 we say that a set W (t), t, \( t < 6 is u-stable (V -stable) 
if for any numbers to < t, < t* f 6, element X* 6; Z) E W (t,,) and strategy 
V (U) the motion 

Xy ItI = x it; {t*, x* (s; ‘t.)}, ‘crl 
(5u ItI = z it; (f*, 5* (s; a* VI) 
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exists such that 
Zv [t* + s; z] E w (t*) (211 [t* + s; zl E w (t*)) 

Or 

{t,’ xv [t + s; f-d) E M ((4 XLr tt + s; 01) @ H V)) 
even if for one t E [t,, t*]. In what follows we also use the concept of strongly stable 
sets from [Z]. 

We choose an arbitrary element 2 (s) E B, and for I%’ (t) # 0 we set 

r (x (4, w (t)) = inf II x (4 - ,y($~& 
(II.u7 is the norm in B,). 

(2.1) 

A strategy UC is said to be extremal to sets W (t), t,, < t < 6, if it is given by sets 

U, (t, z (s; 7)) of the form: if W (t) = 0, then U, (t, 5 (a; 7)) = P; if IV (t) # 

0, then 
U, (t,i x (8; z)) = {q 1 rnz; (5 (0) - 2)' f (t, 2 (s; co), ue, v) = 

f-$Y=@ (z (0) - 4' f (4 2 6; @), u, 4) 

Here z is an arbitrary element of set 2 (i!, x (a; Z)); 2 (t, 2 (S; T)) is the collection 

of elements closest to 5 (0) in E, from the set of partial limits of the sequence 

(#) (0)) which is th e 0 -section [2] of some section {y) = {X(k) (a; T)} from (2.1). 
being a minimizing sequence for z (a; .t) ; the prime denotes transposition. The stra- 

tegy P is defined analogously, We have the valid 

Lemma 2.1. Let the initial position PO = {to, 20 (a; T)} be such that 

20 (a; .c) E w (to) (2.2) 

If the sets W (t), to < t Q 6 are strongly u (u)-stable, then the strategy U’ (V”) 
extremal to them ensures the equality 

r (xt is; 71, W (t)) = 0, to < t < 6 

for any 2 [tl = x [t; po, Ue] (x 111 = x It; PO, Vel). 
We denote: ws 0) = {x (8) E Hs 1 x (0) = Y (Oh x (s) = Y k; Z) for almost 

all -6 f s < 0, y (s; z) E W (t)}; x is the closure of set K; X6 (tat x (s; T), 

tl, V) = {y = (4 z (s)} 1 t E [t1, &I, 2 (s) = 2 [t + s; 61, LX I-1 E x (-; 

Ul9 x (s; ‘c)},, v)}; kf (i&) (N (t*)) is the section of set M (N) by the hyper- 
plane t = t, ; w = {{t, 5 (s; 7)) ( t E Ito, 81, x (s; 4 E w (t)). 

In a way similar to Theorem 2.2 of [4] we can prove 
Lemma 2. 2. Let u-stable nonempty sets W (t), to < t < 6 exist such that 

IV, (t) C iv (t) for all t E [to, 61 and W,(6) c M (9). Then, when conditions 
(2: 2) are satisfied the strategy, Ue extremal to these sets solves Problem 1.1. 

There holds 
Lemma 2.3. Let the nonempty sets W (t), to < t < 6 be v-stable and let a 

closed neighborhood G, (M) of set M exist with the property: W n G, (h?) = 0. 
Then we can find a number a > 0 such that the strategy Ve extremal to them solves 
Problem 1.2 for all 20 (a; z) from the a-neighborhood of set w (to)- 

On the basis of Lemmas 1.1 and 2.1 we can verify the validity of 
Lemma 2. 4, Let the system of sets D (t) c B,, to < t < 6 be u (u)-stable; 

then the system of sets B (t), to \< t < 6 is u (@-stable. 
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From the space {t, z (s; T)} we remove all those positions {t*, z* (s; r) } (t* e 
It,, 91) for each of which Problem 1.2 (1.4) is solvable on the interval [t+, 61. By 

W” Q*) (W @*)) we denote the set, closed in B, , of all the remaining positions. 
Lemma 2.5. The sets Wu (t), t, < t < 6 are u-stable. If 5a (s; r) EWU (t,), 

then the strategy Ue extremal to them solves Problem 1.1. 

This assertion can be proved along the lines of the proofs of the analogous assertions 

in [l - 31. Assuming that the sets W” (t), t, < t < 6 are not U.-stable, we conclude : 
we can find t, E [to, 61, t* E (t*, Oi, % (s; r) G IV’ (&) and a strategy V, such that 

X, (t* + s; (t*, 2* (s; ‘6)), V,) fi JV” (t*) = 0 

xi, (t*, f* (s; r), t*7 vr) ri fif = 0 

By the definition of sets Wu (t) , with certain V = V (Q), G (M) = Gk (M) and H (N) = 

Hk (N) Problem 1.2 is solvable for every Xk @; 7) E x, (t* + S; {t*, Z* (s: z)}, v,) . 
We consider the set w (Q) = C( t, 5 (s; r)] I t* e t d Tk b$*l, 

z (s; 7) = 4 it + s; {t+, Xk (s; ‘cl), v WI 

where (rk (x [. 1) is the instant at which the motion x [t] first leaves the region Hb (N) 

It can be proved that the sets NJ,, (t, Q), t* < t < 6, where W. (t, Q) = R’ (t, xh) if 

W (t, a$ + $3 and W, (t, xk) = g if W (t, qJ = 0, are u -stable. Using Lemma 2.3 

we easily verify that the strategy ve (xk) extremal to IV,, (t, xk), t* < t < 6, solves 

Problem 1.2 for certain fik > 0, Gk* (M) and H, * (2’:) for all 5 (S; 7) E S (&). (S (pk) 
is a neighborhood of radius f\jI in U, of the element :Q (s; r)j. By virtue of the compact- 

ness in B+ of the set X, (t* + s; {t*, X* (s; I$), VI) (Lemma 1. l), it can be covered 

by a finite system of such neighborhoods S (bk) k = 1,2, . . . , ‘1. We consider the set 

W, = {WI (t), t* Q t < 6) of pairs (t, z (s; T)}, x (s; 7) E WI (t),which satisfy the con- 
dition 

t* < t < t*, 5 (s; z) = 2, it + s; it*, x* (s; ‘c)), VII 
or the condition 

t* < t < T* (32 [.I), x (s; T) = zg it + s; (t’t 5 (s; ‘G)], ve (XfJl 

Here x (s; r) is an arbitrary element of S (&J; z* (5 [.I) is the instant at which the mo- 

tion z It1 first leaves the region 
H(N) = ‘;I’ R,* (N). 

Let us prove the v-stability of sets w, (t), t, .G t Q 6. We assume to the contrary that 
instants tj and tz (tz > tJ from [t*, 61 , an element ~1 (6 7) E Wr (11) and a strategy zi, 
exist such that 

]t, x,,, ]t i- 6 {try ~11, U,l = H (N), tl < t < t, (2.3) 

x, (t2 + s; {tr, Xl b; Ql, LI,) II WI (tz) = 0 (2.4) 

For instance, let tl > t*. From the method of constructing W, we can find a number k,, 
an element g (s; 7) E S (zkI) and a motion 2’ [t] = 5 [t; {t*, g (s; T)), ve(zk,)l such 
that 11 (s; r) = x0 ]t i- s; 4, tl f T* (x0 f-1). We consider an arbitrary motion 

x* [tl = x [t; (h, 51 (s; @I, Ul, ‘VB (qJ1 

If P* = T* (z* [.I) f ta, then by the construction of W” (t) and Lemma 1.1, {z*, ,z* x 

[.c* -k S; 01) e H (N), which contradicts (2.3). If 7* > t,, then Z* ]tz i- s; ~1 E If’,(b), 
which contradicts (2.4). T”- v -stability of the sets w, (t), t, < t q Q and with tl < 
t* , can be verified analogousl;:. It is clear that w, n Z (M) = 0, for any closed 
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neighborhood of the set M 3 (M) c: Qxh* (M). Using Lemma 2.3 we can establish 

(since G (G ?) F Ft; (t*) 1 that the strategy Ye extremal to the sets W, (t), to < t f 6 
solves Problem 1.2 with certain H (N) and G (M). However, this is possible only when 
+ (s; 4 @s w (t& The latter property of sets wu (t), ts‘ < t 6 6 follows from the way 
they were constructed and from Lemma 2.2. The lemma has been proved. 

In a manner similar to Lemma 2.5 we can prove 
Lemma 2.6. The seta W” (t), t O <, t < @ are strongly u-stable. If x0 (s; -i>E’. 

w” (to), then the strategy Ue extremal to them solves Problem 1.3. 
From Lemmas 2.2, 2.5 and 2.6 follow: 
Alternative 1. Either r. (a; z) e W” (to) and then Problem 1,l is solvable 

(where as the strategy Ue (t, z (s; r) we can take the strategy Ue extremal to the 
sets WU (t), t, < t < 6)), or z. (a; ‘t) @ Iv” (to) , and then Problem 1.2 is solvable. 

Alternative 2, Either 50 (a; ‘r) +S w” (t,) and the Probler 3 is solvable 
(where as the strategy Ue (t, 5 (a; .c) we can take the strategy U’ extremal to the 

seta IV” (Q, &J < t < @)),I or x0 (a; z) 6 IV’ (to) and then Problem 1.4 is solvable. 

3. We indicate two methods for constructing strongly u (v) -stable sets, similar to 
El]. Let us set the inclusion 

Lemma 3. 1. Let CD (t, 2 (s; w)) $= G”, foreachpair {t, x (s; w)j fromsome 
domain D E It,, $1 X &,, and let there exist an absolutely continuous solution t = 
w (t) (to < t < 9) of inclusion (3. I), satisfying the conditions 

w (to + s; w) = to (s; o), w (19 + a; CL) E J!f (fi) 

{t, w (t + 5; o>} E D n N, $0 < r < 6 

Also let Condition A be satisfied in some open domain D, such that (t, W (t -i- 8; 

(011 E D,, to < t < 6 l 
Then the strategy Ue extremal to the path 

w = fit, x: (s; x)} 1 t, f t < 6, 5 (s; 7) = w (t + s; d 

ensures the displacement of all positions {t, G It i- S; pa, U”t) along this path up to 
contact with (6, M (a)}. 

Let Condition A be satisfied for each pair (t, 2 (a; w)) from some open domain D,, 
such that N C D, and (to, x0 (.s; w)) E D, and let the function 

x (1, 5 (s; o), I) = - max min Z’f (t, 3 (s; o), u, u) 
uEP UEQ 

be convex in 1. We denote, x (t) = x (t; to, x0 (s; a)) to be an arbitrary solution of 
the inclusion 

.z”@) = B (4 r (t + s; a)), t, < r < # (3.21 

R (G s (% (41 = ,& FLfG 1: (s; 4), g) 

and let z = IZ (I(.)) be the first instant that either (2, x (Z i- s; o)} @ DB or 

(r, z(r 9-s; u))=M. 
Lemma 3.2. If R(t,s(s; @))#a for {t,s(s; o)}EDsandthesolu- 

tion x ($1 I= x (t; t,, z. (s; w)) of inclusion (3.2) exists, for which the position 
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{t, 5 (r f S; r)} bypasses M until an exit from N or bypasses M until the instant 
6, then the strategy V” extremal to the path {t, z (t + s; r)} solves Problem 1.2. 

Otherwise, the strategy U” extremal to the set W = [{t, 5 (s; T)) 1 t, q t c 

T is (-)), z (4 = 5 (c 43, x,, (s; co))] solves Problem 1.1. 
N o t e 3. 1. From these results we can similarly obtain (see [l], Sect. 18) the solu- 

tions of the following problems. 

Problem 1. 5. Find the strategy U =- U, (t, x (s; .t)) satisfying the condition 

SUPJ(+e I*+s;pI) = mJln~;yI(q[8+ s;p]) 
xc.1 

(W [tl = 2 tt; {t,, to (s; a)}, Ul) 

Problem 1. 6. Find the strategy V = V, (t, z (s; 7)) satisfying the condition 

id I (xVe 16 + s; pl) = m;x 2: 1 (w 16 + s; PI) 
-r[*l 

(XV It1 = 5 [t; {t,, 5, (s; r)}, Ul) 

The functional I(2 (s; p)) is assumed to be lower (upper) semicontinuous in BP. 
3. 2. Alternatives 1 and 2 are valid also if by the motion z [t; {to, .L (s; ‘c)}, 

Ul (I It; {t,, I (s; T)}, V]) we mean a continuous function x It1 with the property: 

sequence {Aj} of coverings exists, with {Sj} -+ 0 as j -+ 00, such that the sequence 

{~Aj [t; {to, Xj (s; 7))~ Ul} 

({XAj It; {~cI, Xj (s; ~)IP VJI) 

of functions converges in C (It,, 81) to z [t], where Xj (s; T) --t X (s; T) in & as 

j --t 00. In this case the sheaf 

x (.; @“, .r (a; r)}, U) (X (*; It,, J: (s; +, V)) 

is upper-semicontinuous by inclusion [l] at each point J: (s; z) = zh (s; 7) (relative to 

the parameter X* (s; r) ‘and in the metric of C (It,,, *I)). Under such definition of 
motion the approach-evasion game with information storage [l] (with complete memory 

[6]) is a special case of Problems 1.1 and 1.2 if the functional cp = rp (x [tl, t, < 

t < 00) (see [l], p. 427) satisfies the condition: q = cp (X [t], t, < t < fi,), where 
19~ is some positive number. In this connection 

o = 0, p = 6,, Bg = C (I- 6, ‘I), N = B, 

(co = p = 6,, Ba = C (l-6, 01)). 

The author thanks Iu. S. Osipov for posing the problem and for valuable advice. 
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A nonlinear escape problem for conflict-controlled systems described by differ- 
ential equations with a lagging argument is considered, The sufficient escape 
conditions which are realized in the class of piecewise-constant functions are 
obtained. The paper relates to the researches in El - SJ and is a continuation 
of [9, 101. 

1. Let a system’s motion be described by the differential equation 

5’ (t) = f (z (t), 2 (t - z), u, v), u E u. u E v Cl. 1) 

Here z is the ~-dime~ional phase vector, u and u are the control parameters of the 
first and second players, U and V are closed bounded sets. The function f (z, x7, LC, 
v) is continuous in all arguments and is continuously differentiable in II: and x,, T > 0 

is the magnitude of the lag. A terminal set fif, which is subspace, is delineated in the 
space E” . The game terminates if 5 (t) hits onto set M. As the initial state for the 
game (1.1) we can take any absolutely contours function g (t) given in the interval 

[- ‘t, OJ. In what follows we assume that derivatives of ali the orders needed are pre- 
Dent ~1 the functions g (t) used as the intial functions; these derivatives and the func- 
tions themselves satisfy in the interval [- z, 01 a Lipschitz condition with a constant 
not exceeding a specified number C. 

The vector z (t) moves under the action of the measurable functions u (t) and v (tf; 
the conditions. ensuring the con~nu~i~~ of the solution z (t) onto the whole semi- 
infinite time interval are assumed satisfied. At each instant t the players know the 
game’s state 5t (s) = 5 (t + s), - z < s < 0. This restricts the information avail- 
able to the second player from whose position the game is analyzed. We also assume 
that from the function x (t) specified in some time interval,the escaping can instantly 
compute its derivatives of all orders needed at any point of the interval. 

Let us describe how the game proceeds. From the known current state X (e) (a dot 
within the parentheses means that the function: x (t) on the whole,is being treJed as 
an element of a functional space) the second nlaver determines a number e (x (a)) > 
0, selects a control v (t) = u (x(a); t), 0 < t < e (z (-)) , and informs his oppo- 
nent. On the basis of the information received the iirst player sets his own control U ft) 


